Chapter 5 Booklet Polynomials

Name:_____
Due Date: ____

MATH 9 – POLYNOMIALS REGULAR ASSESSMENT RECORD

Name:	Class:	
Name.	Glass.	

Category	Topic	Due Date	Mark
5.1	The Language of Mathematics		
	Pg. 179/180 Q. 3, 4, 5, 7, 8, 10, 11, 14, 15, 17, 19,		
	21		
	Pg. 181/182 Q. 23, 24, 26, 28, 30		
5.2	Equivalent Expressions		
	Pg. 187/188 Q. 2, 4, 6, 7, 9, 11, 12, 16, 17, 19		
	Pg. 189 Q. 21, 22, 25		
5.3	Adding and Subtracting Polynomials		
	Pg. 195/196 Q. 3, 5, 7, 8, 11, 12		
	Pg. 197/198 Q. 15, 16, 17, 21, 24		
	Pg. 199 Q. 27, 29		
Review	Pg. 200 Q. 1 – 28		

At the end of this unit you will be assessed on the following:

1.	I can identify constant terms, coefficients, and variables in polynomial expressions.
2.	I can define, in my own words, what a polynomial is.
3.	I can recognize polynomials from a list of expressions.
4.	I can identify a monomial, binomial, and trinomial.
5.	I can identify the degree of a given polynomial.
6.	I can evaluate polynomial expressions by substituting a variety of given values of the variable.
7.	I can perform the operations of addition and subtraction on polynomial expressions O Concretely with Algebra Tiles Pictorially with Algebra Tile diagrams Symbolically with variables
3.	I can identify the error(s) in a given simplification of a given polynomial expression.

5.1 The Language of Mathematics

Mathematics has its own vocabulary.

A study of algebra includes working with polynomials. They are named by the number of **terms (an expression formed from a single letter, number or letter and number**.

Monomial – has only one term.

Example 1)

Binomial – has two terms.

Example 2)

Trinomial - has three terms.

Example 3)

Polynomial- more than three terms.

Example 4)

Try Question:

Expression	Number of Terms	Name
4xy + 3		
$7a^2 - 2ab + b^2$		
5x + y + z - 6		
1.3		

The $degree\ of\ a\ term$ is the sum (+) of the exponents on the variables.

Example 5)

- a) 3xz can be written as $3x^1z^1$ so the degree is 1 + 1 = 2
- b) 5x3 has a degree of 3
- c) 7 could be written as $7 \times x^0$ so the degree of this term is 0.

The **degree of a polynomial** is the degree of the highest-degree term in the polynomial.

Example 6)

a)
$$4x^4 - 5x^2 + 6$$
 has a degree of 4.

Try Question:

What is the degree of each polynomial expression?

1)
$$5x^3 - 6x + 2$$

2)
$$4x^2y^2 - 7xy$$

4)
$$6x + 7x^3 - 9$$

Terms:

Coefficients - The numerical part of a term

Variables - The letter part of a term

Note: Variables are usually written in alphabetical order

<u>Term</u>	<u>Coefficient</u>	<u> Variable(s)</u>
5x ²	5	X
3∕4 ab	3/4	a & b
-xyz	-1	x, y, & z

Constant: A term with no variable

e.g. The polynomial
$$3x^2 - 5x - 7$$
 has a constant of -7

Leading Coefficient: The coefficient of the term with the highest degree e.g. The polynomial $3x^2 - 5x - 7$ has a leading coefficient of 3

Try Question:

Give an example of a polynomial with the following characteristics

- a) A binomial with three variables and a degree of four
- b) A monomial with a fractional coefficient and a degree of two
- c) A trinomial with one variable, a degree of three, and a negative constant
- d) A binomial with a leading coefficient of 1

Modelling Polynomials Using Algebra Tiles

When we show Algebra tiles on paper: we shade in the positive ones and leave the negative ones white.

Key Ideas:

- 1) Algebra uses symbols to represent unknown numbers. These symbols are often letters called variables.
- 2) Polynomials are made up of terms. Terms are connected by addition or subtraction.
- 3) Polynomials can have one or more terms. They are named by the number of terms: monomial, binomial, trinomial.
- 4) Each term has a degree, found by adding the exponents on the variables.
- 5) A polynomial has the same degree as its highest-degree term.
- 6) You can use algebra tiles to model polynomials.

Practice Problems:

5.1 The Language of Mathematics, Pages 179 – 182 DUE DATE:		
Page 179, #3	Page 179, #4	
Page 179, #5	Page 179, #7	
Page 179, #8	Page 179, #10	

Page 179, #11	Page 180, #14
Page 180, #15	Page 180, #17
Page 180, #19	Page 181, #21

Page 181, #23	Page 181, #24
Page 181, #26	Page 181, #28
Page 181, #30	

5.2 Equivalent Expressions

Equivalent Expressions

Like Terms:

Terms that differ only by their coefficients. (They have the same variables with the same exponents)

e.g. 3x and 5x are like terms 1/2xy and -xy are like terms

9x and $4x^2$ are not like terms 7x and 8y are not like terms

3xy2 and 5x2y are not like terms

Example 1)

Which of the following is a like term to $\frac{2xy}{3}$?

- a) $\frac{2x}{3}$
- b) $-5x^{3}v$
- c) $4xy^2$
- d) -xyz
- e) -8xv
- f) None of the above

Try Questions:

1)

Which of the following is a like term to $\frac{2xy}{3}$?

- a) $\frac{2x}{3}$
- b) $-5x^{3}v$
- c) $4xy^2$
- d) -xyz
- e) -8xv
- f) None of the above

Example 2)

Which of the following is a like term to $7a^3b^2c$?

- a) $-3a^2b^3c$
- b) $7ab^3c^2$
- c) -10abc
- d) $9a^3bc^2$
- e) 3a²bc²
- f) None of the above

2) Which of the following is a like term to $-23x^2y^2$?

- a) $5xy^2$
- b) -14xy
- c) $23x^2y$
- d) $14x^2y^2$
- e) $6xv^3$
- f) None of the above

- 3)
 Which of the following is a like term to 18xyz4?
- a) $9xy^4z$
- b) $-33xyz^4$
- c) 2xyz
- d) $20x^4y^4z^4$
- e) $7x^4yz$
- f) None of the above

Combining Like Terms: Like terms are grouped together by adding the coefficients

e.g $4x^2 + 5x - 3 + 8 - x + 2x^2$ can be simplified to $6x^2 + 4x + 5$

Try Question: Model the expression. Then combine the like terms.

1)
$$5x - 3x^2 + 2x - x^2$$

2)
$$2x - 6 - 2x + 1$$

Key	z Id	leas:
110	, 10	icas.

- 1) Like terms differ by only their numerical coefficient (same variables with exponents).
- 2) Like terms can be combined.
- 3) Like terms: 7x and 3x, w^2 and $0.5w^2$
- 4) Unlike terms: 6x and 3x2, m2n and mn2

Questions Page 187-189 DUE:	
Page 187, #2	Page 187, #4
Page 187, #6	Page 187, #7
Page 187, #9	Page 187, #11

Page 188, #12	Page 187, #16
Dama 400 #47	David 400, #40
Page 188, #17	Page 188, #19
Page 189, #21	Page 189, #22

5.3 Adding and Subtracting Polynomials

Adding Polynomials

Addition: Collect like terms and order in descending order

e.g.
$$(4x^2 + 5x - 10) + (2x^2 - 3x + 4)$$

Example:

$$(2x^2 + x - 7) + (x^2 - 4x - 2)$$

Try questions:

1)
$$(2a-1)+(6-4a)$$

2)
$$3t^2 - 5t + t^2 + 2t + 1$$

Subtracting Polynomials

Subtraction: Add the opposite polynomial. Then collect like terms.

e.g.
$$(4x^2 + 5x - 10) - (2x^2 - 3x + 4)$$

$$(4x^2 + 5x - 10) + (-2x^2 + 3x - 4)$$

This is the opposite polynomial

Write the opposite polynomial

- a) x
- b) 5-3x
- c) $7x^2 + 5x 1$

Example:

$$(2x^2 + x - 7) - (x^2 - 4x - 2)$$

Try Questions:

1)
$$(2x-3)-(-x+2)$$

2)
$$(5x^2 - x + 4) - (2x^2 - 3x - 1)$$

Example:

P=

Determine the perimeter if x = 3 cm

Example:

$$P = 5x^2 - 7x + 3$$

Determine the length of the missing side

Key Ideas:

- 1) You can add or subtract polynomials. You can use algebra tile models to help simplify the expression.
- 2) The opposite of a polynomial is found by taking the opposite of each of its terms.
- 3) To subtract a polynomial, you can add the opposite terms.

Questions Page 195-199

DUE:

Page 195, #3	Page 195, #5

Page 195, #7	Page 195, #8
Fage 195, #1	Fage 195, #6
Page 196, #11	Page 196, #12
Page 197, #15	Page 197, #16

Page 198, #17	Page 198, #21
Page 198, #24	Page 199, #27
Page 199, #29	,

Review Page 200	DUE:
-----------------	------

Dama 2000 #4 C	Dama 200 #7
Page 200, #1-6	Page 200, #7
Page 200, #8	Page 200, #9
Page 200 #10	Page 200, #11
Page 200, #10	Page 200, #11

Page 200, #12	Page 200, #13
1 ago 200, 11 12	1 490 200, 11 10
Page 200, #14	Page 200, #15
Page 200, #16	Page 200, #17

Page 200, #18	Page 200, #19
Page 200, #20	Page 200, #21
Page 200, #22	Page 200, #23
-	

Page 200, #24	Page 200, #25
1 age 200, #24	1 age 200, #20
Page 200, #26	Page 200 #27
Page 200, #20	Page 200, #27
Page 200, #28	